Exam Lie Groups in Physics

Date	November 8, 2017
Room	BB 5161.0165
Time	9:00-12:00
Lecturer	D. Boer

- Write your name and student number on every separate sheet of paper
- Raise your hand for more paper
- You are not allowed to use the lecture notes, nor other notes or books
- The weights of the four problems are given below
- Answers may be given in Dutch
- Illegible handwriting will be graded as incorrect
- Good luck!

Weighting

Problem 1

Consider the group $S U(2)$ of all unitary 2×2 matrices with determinant equal to 1 , and the group $U(1)$ of all complex phases.
(a) Derive a parametrization of all the elements of the group $S U(2)$, use it to determine the parameter space of $S U(2)$, and explain whether the group is compact and/or connected or neither.
(b) Give a parametrization of a $U(1)$ subgroup of $S U(2)$ in the defining representation of $S U(2)$. Explain whether this is an irreducible representation of $U(1)$ or not.
(c) Show whether the coset space $S U(2) / U(1)$ is a factor group or not.
(d) Show that the center of $S U(2)$ is isomorphic to Z_{2} (you are allowed to use Schur's lemma, assuming that the defining rep is irreducible) and discuss whether $S U(2) / \mathrm{Z}_{2}$ is a factor group or not.

Problem 2

Consider the Lie algebra $s u(n)$ of the Lie group $S U(n)$ of unitary $n \times n$ matrices with determinant equal to 1 .
(a) Decompose the following direct product of irreps of the Lie algebra $s u(n)$

into a direct sum of irreps of $s u(n)$, in other words, determine its Clebsch-Gordan series. Suggestion: first write down the allowed "words" consisting of two a 's and two b 's.
(b) Write down the dimensions of the irreps appearing in the obtained decomposition for $s u(3)$ and $s u(4)$. Indicate the complex conjugate and inequivalent irreps whenever appropriate.
(c) Consider for $s u(3)$ the complex conjugate of the above direct product in terms of Young tableaux, decompose it into irreps and compare the answer to the one obtained in part (b).

Problem 3

Consider the four-dimensional representation of the generators of the Lorentz group:

$$
\left(M^{\mu \nu}\right)^{\alpha}{ }_{\beta}=i\left(g^{\mu \alpha} g^{\nu}{ }_{\beta}-g^{\nu \alpha} g^{\mu}{ }_{\beta}\right)
$$

(a) Write down the matrices for the following two cases: $\mu=0, \nu=1$ and $\mu=2, \nu=3$.
(b) Derive an expression for $\exp \left(-i \chi M^{01}\right)$ in terms of hyperbolic cosines and sines, using the expression for M^{01} obtained in part (a). Conclude which Lorentz transformation it corresponds to. Recall that $\cosh x=\left(e^{x}+e^{-x}\right) / 2$ and $\sinh x=\left(e^{x}-e^{-x}\right) / 2$.

Problem 4

Consider the Poincaré group that consists of all transformations that leave distances between four-vectors invariant.
(a) Describe the connected components of the Poincaré group.

Consider the Pauli-Lubanski vector $W^{\mu}=-\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} P_{\nu} M_{\rho \sigma}$, where P_{ν} is the four-momentum and $M_{\rho \sigma}$ denotes the generators of the Lorentz group.
(b) Give expressions for W^{0} and W^{1} in terms of the generators $P^{0}, P^{i}, J^{k}=\frac{1}{2} \epsilon_{k l m} M^{l m}$ and $K^{i}=M^{0 i}$, using $\epsilon^{0123}=1$. The indices i, j, k, l, m can take values $1,2,3$. Show that W^{0} is related to the helicity and write down the obtained expressions in the rest frame of a massive particle.
(c) Demonstrate that $W_{\mu} P^{\mu}=0$.

